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Fig. 1. Semantic segmentation results for the KITTI (left), Scannet
(right-up), and Replica (right-down) datasets. Map points in 3D are
colored with the associated semantic class following the Cityscapes
(left), and NYU40 (right) color labeling. Semantic pySLAM enables
seamless integration of multiple semantic mapping methods within
the SLAM pipeline and datasets. Although the main pySLAM
pipeline works with sparse points, the output of the volumetric
integration module has been added for visualization.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) using
images can be considered now a mature field. The efforts of
the community to consolidate solutions to the SLAM problem
have resulted in recent proposals such as pySLAM [1], or
VSLAM-LAB [2]. In parallel, images have been widely used
to extract semantic information from scenes. The advances
made in this field have also prompted the appearance of
SLAM solutions incorporating different variants of semantic
features [3]–[7]. However, the research on semantic mapping
still poses some problems.

First, semantic mapping presents a higher level of ab-
straction than geometric mapping. Additionally, the field is
less mature, and semantic reasoning from neural networks
evolves fast. Thus, some of the theoretical bases are yet
to be established. How can we extract semantic knowledge
from images? How should semantic features be interpreted?
How should multiple observations be combined? How should
the proposed methods be evaluated in a fair and rigorous
manner? These questions still remain unanswered, partially
due to the lack of standardized frameworks for the integration
and evaluation of semantic mapping implementations.
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Fig. 2. Overview of the pySLAM architecture with the newly
integrated semantic mapping module. The semantic mapping module
implements common semantic mapping functionalities in a unified
manner while integrating seamlessly with the SLAM pipeline. Com-
ponents shown in gray are not yet implemented but are compatible
with the framework.

The contribution of this work is a general semantic mapping
framework designed to integrate within the SLAM pipeline,
enabling a unified implementation and evaluation of semantic
mapping methods. To this end, we analyze current research
on semantic mapping, identify common approaches, and im-
plement the necessary modules within pySLAM, allowing the
use of existing datasets. We apply the proposed framework to
incorporate typical semantic mapping methods and evaluate
them on the ScanNet dataset [8]. With this article and the
proposed system, we aim to foster discussion on how seman-
tic knowledge should be incorporated into maps, ultimately
reaching consensus that can drive progress in semantic scene
understanding, similar to the evolution seen in SLAM.

II. SEMANTIC PYSLAM

To incorporate semantic mapping into the SLAM pipeline,
we leverage the pySLAM framework. pySLAM is a Python
implementation of a Visual SLAM pipeline with different
variants of common components (i.e., feature extraction and
matching, tracking, mapping, loop closing, and volumetric
reconstruction) and integration with several datasets, enabling
benchmarking and experimenting with visual SLAM tech-
niques in a unified way. We include a semantic mapping
module within this framework that runs in a parallel thread
after the local mapping step, processing refined keyframes and
adding semantic features to keypoints and sparse map points
used by the geometric SLAM module.



To maintain generality, we design the semantic mapping
module to support most existing approaches using semantic
features. From the literature, we identify a taxonomy based
on two main aspects. First, 3D entities: semantic features
can be assigned to each point of the map using pixel-level
semantic segmentation [3]–[5], [9]–[12], or to object-level
clusters through object detection and segmentation to create
3D segments [13]–[21]. Second, the type of features: semantic
features output by neural networks can be interpreted in
different ways, which also determines how they are fused.
Interpreting them as point estimates yields categorical labels,
which can be combined by simple counting [17]. When
treated as probability vectors, fusion can be performed using
Bayesian approaches [3], [4], [9], or averaging [18]. More
recently, research on language-aligned feature spaces such as
CLIP [22] has led to the use of latent feature vectors, which
allow matching against natural language descriptions for open-
vocabulary segmentation. Fusion, in this case, remains an
open problem, with current strategies ranging from averaging
to selecting the most representative vector, or learning-based
solutions [5]–[7], [10], [11].

The proposed interface allows seamless integration of se-
mantic mapping into the SLAM pipeline. We implement the
pixel-level semantic mapping approach as a module sup-
porting all feature types and their fusion methods (i.e., la-
bels, probabilities, and feature vectors). Segment-based meth-
ods are left for future work. We include support for deep
learning libraries, torchvision and transformers, including
two off-the-shelf closed-set semantic segmentation models,
DeepLabV3 [23] and Segformer [24]. We also integrate an
open-vocabulary method based on CLIP using the f3rm li-
brary [11]. Functionality for visualizing semantic features and
evaluating the semantic mapping task is also implemented. The
proposed framework, along with all implemented functionality,
is currently being integrated into pySLAM 1.

III. RESULTS

To highlight the research opportunities enabled by the pro-
posed framework, we evaluate and compare multiple semantic
mapping methods integrated within the SLAM pipeline. This
unified setup supports consistent evaluation and facilitates
the development of new approaches, such as open-vocabulary
mapping, across different datasets and representations.

First, we compare various semantic representations follow-
ing a strategy similar to SemanticFusion [3]. We integrate
the ScanNet dataset into pySLAM, which provides RGB-D
sequences from diverse indoor scenes along with ground-
truth camera trajectories and semantic labels based on the
NYU40 class set. This experiment investigates whether fusing
semantic information across keyframes improves accuracy
compared to single-image inference. For each keyframe, we
project the corresponding 3D map points and compare their
semantic descriptors with the ground-truth labels of the frame.
We compare the classification results against only using the

1Check: https://github.com/luigifreda/pyslam/pull/177

TABLE I. Semantic mapping results on ScanNet using sequence * 00 for
all scenes. Reported values are macro-averaged precision.

Model Feature Scene

568 578 435 100 488 Avg.

Segformer
2D seg. 0.538 0.546 0.344 0.381 0.531 0.473

Label 0.549 0.585 0.349 0.407 0.601 0.498
Prob. vector 0.535 0.579 0.375 0.400 0.673 0.512

CLIP

2D seg. 0.270 0.349 0.148 0.108 0.213 0.220

Label 0.314 0.357 0.185 0.113 0.299 0.253
Prob. vector 0.354 0.394 0.188 0.121 0.256 0.263
Feat. vector 0.357 0.374 0.181 0.120 0.327 0.272

Fig. 3. Similarity of 3D features to “rayo mcqueen”, and “something
to sit on” respectively with the associated image that observed it.

semantic predictions obtained directly from the RGB image
named 2D seg.

We employ two models for semantic inference, Segformer
trained on ADE20k and the pixel-based CLIP model for
closed and open-set segmentation respectively, using multiple
semantic representations termed Label, Probability vector, and
Feature vector. Notably, Segformer is applied off-the-shelf
by mapping ADE20k labels to NYU40, showing competitive
performance despite the domain shift. We report the macro-
averaged precision for several scenes and their overall average
in Table I. Results show that using a fused 3D map often leads
to more accurate segmentation, although the improvement
depends on the chosen representation.

Beyond quantitative evaluation, we provide qualitative re-
sults for open-vocabulary mapping. Figure 3 shows maps
queried using natural language, with relevance visualized as a
heatmap based on similarity to the text query. This example
illustrates how the framework enables seamless integration
of new methods and paves the way for future research that
leverages semantics within the SLAM pipeline in a more
unified and extensible manner.

IV. CONCLUSIONS

This work presents a unified implementation for integrating
semantic information into the pySLAM framework, enabling
consistent evaluation and rapid prototyping of semantic map-
ping methods. The integration supports diverse research direc-
tions, including the use of semantics within SLAM for tasks
such as evaluating descriptor quality. Our results emphasize
the need for further investigation into semantic representations
and fusion. The framework also opens new possibilities for
high-level applications requiring contextual understanding of
the environment.
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