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Fig. 1: Inspired by the interstellar navigation of spacecrafts, which exploits prior ephemeris data, star coordinates, and onboard star images
to achieve localization [1]–[3], we propose Night-Voyager, a framework utilizing prior object-level streetlight maps for nocturnal vision-
aided state estimation. (a) and (d) depict the NASA’s Voyager mission [4] and a typical image of star systems in deep space [5] (image
credit: NASA/JPL-Caltech and ESO/Digitized Sky Survey). (b) and (e) are typical images captured in nocturnal scenes. (c) displays the
online localization (the blue curve) of Night-Voyager within the streetlight map (white boxes) and the matches (red spheres). (f) depicts the
trajectories estimated by the odometer-aided OpenVINS [6], the odometer-aided VINS-Mono [7], [8], and Night-Voyager [9], respectively.
The color bar indicates the trajectory error scale with respect to the ground truth (purple curves).

Abstract—Accurate and robust state estimation at nighttime
is essential for autonomous robotic navigation to achieve noc-
turnal or round-the-clock tasks. An intuitive question arises:
Can low-cost standard cameras be exploited for nocturnal state
estimation? Regrettably, most existing visual methods may fail
under adverse illumination conditions, even with active lighting
or image enhancement. A pivotal insight, however, is that
streetlights in most urban scenarios act as stable and salient
prior visual cues at night, reminiscent of stars in deep space
aiding spacecraft voyage in interstellar navigation. Inspired
by this, we propose Night-Voyager, an object-level nocturnal
vision-aided state estimation framework that leverages prior
object maps and keypoints for versatile localization. We also
find that the primary limitation of conventional visual methods
under poor lighting conditions stems from the reliance on pixel-
level metrics. In contrast, metric-agnostic, non-pixel-level object
detection serves as a bridge between pixel-level and object-level
spaces, enabling effective propagation and utilization of object
map information within the system. Through comprehensive
experiments in both simulation and diverse real-world scenarios,
Night-Voyager showcases its efficacy, robustness, and efficiency,
filling a critical gap in nocturnal vision-aided state estimation.

I. VISUAL METHODOLOGY IN NOCTURNAL SCENES

1) Conventional Vision-aided State Estimation: Although
these methods [6]–[8], [10]–[14] achieve great performance in
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well-lit and textured environments, they are prone to failures
in nocturnal environments, as shown in Fig. 1. The unfavor-
able, unstable, and inconsistent illumination conditions lead to
limited visual information and erroneous data association.

2) Active Lighting for Illumination Enhancement: Intu-
itively, a practical solution is to utilize active headlights in low-
light scenarios. However, as shown in Fig. 2, active lighting
can exacerbate the inconsistent and imbalanced variance of
illumination [15]–[17]. Moreover, illuminated dust particles
[18], including high-reflectivity objects [16] are sparkling due
to backscattering [19], leading to chaotic data association.

3) Image Quality Enhancement: There are numerous clas-
sical image processing methods [20]–[22] and deep learning-
based methods [23]–[28] to enhance low-light images. Never-
theless, the generalization and real-time performance of these
methods fail to meet the requirements of robotic applications.
Furthermore, image enhancement is also challenging in ad-
dressing the inconsistency issue between images.

4) Data Association Enhancement: Extensive works are
proposed to achieve consistent feature matching [29]–[38].
However, applying these methods in low-light environments
remains challenging. In addition, the issues of generalization,
parameter tuning, and real-time performance also represent
bottlenecks for online robotic applications.

II. CRUX AND KEY INSIGHT

The underlying problem of nocturnal visual state estimation
stems from two primary bottleneck factors: insufficiency and

https://doi.org/10.1109/TRO.2025.3548540
https://github.com/IMRL/Night-Voyager
https://youtu.be/x7XtC_ALz80


Fig. 2: Top row: active lighting results in a significant number of
erroneous feature matches (colored dots and lines). Bottom row:
object-level detection of streetlights (green detection boxes) remains
extraordinarily robust even in completely dark nighttime scenarios.

inconsistency. The insufficiency indicates the lack of visual
features in low-light environments. Even when features are
present, they are often transient and typically originate from
dynamic objects. The two key bottleneck factors point to a
crux: conventional visual methods heavily rely on pixel-level
feature extraction and data association. The following key
insights motivate us to fundamentally solve the problem:

Key Insight 1 (Pixel-level and Pixel-metric Methodologies).
Low-light conditions lead to insufficiency and inconsistency
issues stemming from pixel-level and pixel-metric method-
ologies, while metric-agnostic and object-level methods are
immune to these two bottlenecks.

Key Insight 2 (Prior is All You Need). This work reinforces a
seminal insight that remains equally essential for both model-
based and data-driven methodologies: Prior is all you need–
whether from sensors, physical models, or learned models.
Essentially, prior information implicitly provides reliable con-
straints, effectively mitigating the impact of significant model
or sensor noise, particularly in challenging environments.

Key Insight 3 (Consistent and Efficient Estimator). A con-
sistent and efficient estimator is essential for measurements
with substantial uncertainties in challenging environments.

III. NIGHT-VOYAGER

In this work, we propose Night-Voyager, a hybrid object-
and pixel-level vision-aided state estimation framework, as
shown in Fig. 3. We briefly introduce the contained modules
as follows, and the work details can be referred to [9].

1) Multi-Sensor Fusion Module (MSF): The MSF module
that fuses sensor measurements is independent of other mod-
ules, enabling the system to achieve all-day state estimation.

2) Initialization: To determine the initial pose in the
map without the aid of Global Navigation Satellite Sys-
tems (GNSS), the initialization module divides the map-based
global localization problem into a series of Perspective-Three-
Point (P3P) problems [39]. With the two-level filtering method,
the optimal solution can be determined quickly and accurately.

3) Map-Based Localization: A two-stage cross-modal data
association approach for streetlighs in this module ensures ac-
curacy and robustness of the detection-map matching process,
providing reliable object-level observations for state update.
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Fig. 3: System overview of the proposed Night-Voyager.
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Fig. 4: Different map representations for vision-aided state estimation.
(a) Visual feature point map. (b) Line map. (c) Point cloud map.
(d) Streetlight map where the colored blocks represent streetlight
instances and the gray ones are prior poses from the mapping process.
Compared with (a), (b), and (c), (d) is a highly lightweight map
containing both geometric and semantic object-level information.

4) Tracking Recovery: For improving robustness, this mod-
ule is designed to correct the state estimate by using the brute-
force method when streetlight matches are absent for a while.

5) Feature-Decoupled MSC-InEKF: The proposed filter
endows Night-Voyager with a consistent and efficient state es-
timator. The Lie group-based filter with multi-state constraint
makes it particularly robust in nocturnal state estimation, even
in scenarios with high observation noise, prolonged absent
observations, and considerable initialization errors.

We perform comprehensive experiments in both simulation
and real-world scenarios, as detailed in [9]. Fig. 4 shows differ-
ent maps commonly used in visual localization methods [33],
[40]–[42]. However, all of them achieve poor performance in
nighttime cases. The essential reason lies in the reliance on the
pixel-level features and metrics. The streetlight map, which
provides object-level features, empowers Night-Voyager with
accurate and robust state estimation in low-light environments.

IV. DISCUSSION AND CONCLUSION

In this work, we propose Night-Voyager, an object-level
vision-aided state estimation framework to fundamentally re-
solve the insufficiency and inconsistency bottlenecks in low-
light visual tasks. The genesis of the bottlenecks is the
reliance on pixel-level and pixel-metric methodologies. In
contrast, object-level avenues are immune to inconsistency and
transience, leading to a fundamental solution for nocturnal
visual problems. Significantly, this work also reinforces the
importance of prior information for both model-based and
data-driven methodologies.

A promising direction for future work is the integration of
semantic cues or object tracking to impose temporal consis-
tency without dependence on prior maps, advancing towards
a unified all-day navigation framework.
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